
CSRF in the Modern Age
Sidestepping the CORS Standard

Tanner Prynn
@tannerprynn

In This Talk

• The State of CSRF

• The CORS Standard

• How Not To Prevent CSRF

The Fundamentals of HTTP

With cookies:

Without cookies:

The Fundamentals of CSRF

User visits attacker.com:

Browsers enforce security boundaries, so attacker.com cannot access
information for example.com (one piece of the Same-Origin Policy):

http://attacker.com
http://attacker.com
http://example.com

User visits attacker.com:

Javascript on attacker.com running in user’s browser:

The Fundamentals of CSRF

http://attacker.com
http://attacker.com

The Fundamentals of CSRF

attacker.com can send a request to example.com:

http://attacker.com
http://example.com

The Fundamentals of CSRF

attacker.com can send a request to example.com:

This is a cross-site request because it goes between two sites (origins)

http://attacker.com
http://example.com

The Fundamentals of CSRF

Security boundaries are still enforced.

The Fundamentals of CSRF

What if the request causes a State-Changing Action on the server?

Attacker would normally need a valid session ID for the target…

But when a user visits attacker.com:

The attacker can trigger the state-changing
request, and the browser will supply the cookie!

The Fundamentals of CSRF

The Fundamentals of CSRF

This is Cross-Site Request Forgery (CSRF)

What kind of state-changing actions can be CSRFed?

• Account creation & modification

• Admin functions: SQL / run_command?cmd=rm /

• Vulns only exploitable by admins: XSS, SQLi, etc

• Self-XSS becomes exploitable through CSRF

CSRF is, by nature, an authorization bypass

The Fundamentals of CSRF

The State of CSRF

The State of CSRF

• CSRF is everywhere

The State of CSRF

• CSRF is everywhere

• Developers don’t understand how to protect against it

The State of CSRF

• CSRF is everywhere

• Developers don’t understand how to protect against it

• CSRF enables attacks that don’t exist otherwise

The State of CSRF

• CSRF is everywhere

• Developers don’t understand how to protect against it

• CSRF enables attacks that don’t exist otherwise

• Users don’t have a good way to protect against it

The State of CSRF 0x00

CSRF -> code exec in popular ASUS routers

Every major router/modem vendor had (has?) their own version of this

(from Jacob Holcomb - link)

image from Asus

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6343

The State of CSRF 0x01

CSRF -> code exec in TrendMicro Antivirus/Password Manager

See also: password disclosure CSRF in Lastpass

(from Tavis Ormandy - link)

Helpful local HTTP service:

https://localhost:49155/api/
openUrlInDefaultBrowser?url=c:/
windows/system32/calc.exe

image from TrendMicro

https://www.usenix.org/sites/default/files/conference/protected-files/sec14_slides_li-zhiwei.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6343

The State of CSRF 0x02

CSRF -> Full Control of Monero
(Digital Currency) “SimpleWallet”

image from Monero

From MWR InfoSec (link)

https://labs.mwrinfosecurity.com/advisories/csrf-vulnerability-allows-for-remote-compromise-of-monero-wallets/

Cross-Origin Resource Sharing

“CORS defines a way in which a browser and server can
interact to determine whether or not it is safe to allow [a] cross-
origin request.”

- Wikipedia

The CORS Standard

Problem:
api.example.com wants to provide an API that another site
on the Internet can talk to through Javascript

The CORS Standard

http://api.example.com

Problem:
api.example.com wants to provide an API that another site
on the Internet can talk to through Javascript

Solution:
Allow browsers to do more with requests (headers,
content-types) and read the full response

The CORS Standard

http://api.example.com

Problem:
Servers cannot distinguish between legitimate requests
from their own sites, and CSRF - the HTTP request looks
the same

The CORS Standard

Problem:
Servers cannot distinguish between legitimate requests
from their own sites, and CSRF - the HTTP request looks
the same

Solution:
Browser tells the server when it wants to make a cross-site
request, and the server can say yes or no

The CORS Standard

The CORS Standard
We ask the browser to send a request like the following:

The CORS Standard
Preflight Request + Response

CORS: Preflight Request

Origin: Where did the request come from?

Access-Control-Request-Method: What method do we want to send?

Access-Control-Request-Headers: What headers do we want to modify?

CORS: Preflight Response

Access-Control-Allow-Origin: Only this origin is allowed (can be a wildcard *)

Access-Control-Allow-Methods: Any of these HTTP verbs are allowed

CORS: Preflight Response

Access-Control-Allow-Headers: These headers can be modified

Access-Control-Allow-Credentials: The browser can send cookies (or
other credentials)

The CORS Standard

Security boundary around the response is no longer enforced (!)

*Most response headers are not readable unless Access-Control-Expose-Headers is set

If the server responded with valid Access-Control-Allow headers:

CORS Issues: Legacy Support

Browsers can’t make any changes that break sites

=
Browser security standards are dead before they’re implemented

CORS Issues: Legacy Support

GET 
HEAD
POST 
PUT
PATCH 
DELETE

HTTP Methods

GET, HEAD, and POST worked before CORS,
so they have to keep working after

Can’t change how they work at all

CORS Issues: Legacy Support

Thus, we get Simple Requests

GET
HEAD 
POST

Content-Type:
application/x-www-form-urlencoded

multipart/form-data
text/plain

CORS Issues: Legacy Support

Thus, we get Simple Requests

GET
HEAD 
POST

Content-Type:
application/x-www-form-urlencoded

multipart/form-data
text/plain

Classic CSRF: No Preflight Required

CORS Issues: Legacy Support

Everything else:

PUT
PATCH
DELETE

HTTP Headers

Requires CORS preflight

Any other Content-Type

CORS In Practice

Rule Zero, the Same-Origin Policy:

Any requests to the same domain
(that the request is initiated from)
are not affected by CORS

• No Preflight for any request
• Can change most headers

• Can read response body
• Can read most response headers

Send the request

Send a preflight

No preflight, send request immediately

Other header changes?

Content-Type?

CORS In Practice
Is this a simple request?

Method?
GET
POST
HEAD

application/x-www-form-urlencoded
multipart/form-data

text/plain

On valid response only none

CORS In Practice

For simple requests: returning Valid
Access-Control headers means the
requesting site can read the response

CORS In Practice
We ask the browser to send a request like the following:

CORS In Practice
Preflight Request + Response

1

2

The CORS Standard

After a valid preflight response, the browser sends the original request

3
4

CORS In Practice

From

To

We ask the browser to send a request like the following:

The CORS Standard
Request is not sent until valid preflight response is received

Origin does not match, so browser will not send the request

Problem:
Servers cannot distinguish between legitimate requests
from their own sites, and CSRF - the HTTP request looks
the same

Solution:
Is not solved by CORS in many cases!

CORS: Fundamental Issue 1

Security boundary around the response is no longer enforced (!)

Relaxed Security Boundaries == Potential for New Vulnerabilities

CORS: Fundamental Issue 2

CORS: Fundamental Issue 3

It’s really, REALLY confusing!

CORS Issues: It’s Just Really Confusing

Which of the following does not trigger a CORS preflight*?
A) http://example.com to https://example.com

B) example.com to example.com:80

C) example.com:80 to example.com:3000

D) subdomain.example.com to example.com

E) a.example.com to b.example.com

*For example, with a PUT request

http://example.com
https://example.com
http://example.com
http://example.com
http://example.com
example.com:3000
http://subdomain.example.com
http://example.com
http://example.com
http://subdomain.example.com

CORS Issues: It’s Just Really Confusing

Which of the following does not trigger a CORS preflight*?
A) http://example.com to https://example.com

B) example.com to example.com:80

C) example.com:80 to example.com:3000

D) subdomain.example.com to example.com

E) a.example.com to b.example.com

*For example, with a PUT request

http://example.com
https://example.com
http://example.com
http://example.com
http://example.com
example.com:3000
http://subdomain.example.com
http://example.com
http://example.com
http://subdomain.example.com

CORS Issues: It’s Just Really Confusing

What happens if…
• A site returns

Access-Control-Allow-Origin: *

Access-Control-Allow-Credentials: True

(This violates the CORS specification)

CORS Issues: It’s Just Really Confusing

What happens if…
• A site returns

Access-Control-Allow-Origin: *

Access-Control-Allow-Credentials: True

The browser protects you

CORS Issues: It’s Just Really Confusing

Am I protected from CSRF if…
• My site uses client certificates (or HTTP Basic Auth)?

CORS Issues: It’s Just Really Confusing

Am I protected from CSRF if…
• My site uses client certificates (or HTTP Basic Auth)?

NOPE

CORS Issues: It’s Just Really Confusing

What does the browser do if…
• A site returns a Set-Cookie header
• But doesn’t return valid CORS headers?

CORS Issues: It’s Just Really Confusing

What does the browser do if…
• A site returns a Set-Cookie header
• But doesn’t return valid CORS headers?

The browser will still set the cookies

CORS Issues: It’s Just Really Confusing

Do different browser behave weirdly?
• Android 2.X is totally broken
• Safari requires Access-Control-Allow-Headers: Origin
• Internet Explorer 8/9 don’t support everything, but are

surprisingly secure

How Not to Prevent CSRF

Pre-CORS Checklist

• Does the site have CSRF protection (tokens)?

• Is protection applied to all state-changing routes?

• Are the CSRF tokens predictable?

• Could a token be leaked to an attacker? (e.g. token in URL)

Post-CORS

Scenario: We want to make use of CORS

Assume all requests trigger preflight (e.g. server requires a
custom header to be sent with requests)

What can go wrong?

How Not to Prevent CSRF:
Allow-Origin

The Access-Control-Allow-Origin header is really limited, it
can only contain one of two things:

• Exactly one fully-specified domain
• A wildcard: * (incompatible with Allow-Credentials)

This means that most implementations will automatically
generate a response based on the request’s Origin header.

How Not to Prevent CSRF:
Reflect Origin

Any site which can get back a valid origin header for
itself can make arbitrary requests, read responses

Reflecting origin == Removing Same-Origin Policy

How Not to Prevent CSRF:
Reflect Subdomain

“We control all subdomains, so all of them should be
allowed access!”

XSS in any subdomain == XSS in the main domain

The CORS Footgun

The combination of these two headers encompasses 90% of
CORS security issues in the wild:

•Access-Control-Allow-Origin

•Access-Control-Allow-Credentials

The CORS Footgun

The combination of these two headers encompasses 90% of
CORS security issues in the wild:

Takeaway: Returning these two headers gives whatever
origin is returned the ability to make requests and read the
responses as the victim - just like XSS.

•Access-Control-Allow-Origin

•Access-Control-Allow-Credentials

The CORS Footgun

Returning Allow-Origin and Allow-Credentials can allow
attackers to bypass CSRF protection in otherwise secure sites

For any page that returns a CSRF token in the body:
• GET the page with a CSRF token
• CORS allows you to read the response, with the token
• Submit the token with a chosen request

How Not to Prevent CSRF:
Method-Override

HTTP Method Override: functionality in many web
frameworks that allows the HTTP method to be specified as
a header, query param, or body param, which overrides the
actual HTTP verb that was sent

Common ways to invoke:
• Headers: X-HTTP-Method-Override or X-Method-Override
• Query or Body Parameter: _method

Turn GET or POST into PUT/PATCH/DELETE

How Not to Prevent CSRF:
Method-Override
HTTP Method Override:
Turn GET or POST into PUT/PATCH/DELETE

CSRF protection only applies to POST/PUT/etc
• Turn a GET into a POST to bypass CSRF protection*

Server returns Access-Control-Allow-Methods
• Send an allowed method, override to a banned method

Endpoint requires PUT/PATCH/DELETE, no CORS headers returned
• Send a simple request, override to PUT/PATCH/DELETE

*This is relatively uncommon, most frameworks have
default protection against these types of attacks

How Not to Prevent CSRF:
Content-Type Confusion

Some sites rely on CORS to prevent CSRF by:
• Making all requests with a header or content-type which

prevents the request from being simple.
• Requests from their own site do not need to perform a

preflight, so everything works there.
• Don’t return any preflight responses, so no cross-site

requests will come through.

How Not to Prevent CSRF:
Content-Type Confusion

Example: All requests use JSON, which makes the request
non-simple. Browsing the site, you will never see a text/plain
or form-urlencoded request.
But these requests will often still be parsed, and from
perspective of the code, the objects look the same.

So what do I do?

Use your framework’s CSRF protection

Don’t return CORS headers

Europe
Manchester - Head Office
Amsterdam
Cheltenham
Copenhagen
Edinburgh
Glasgow
Leatherhead
London
Luxembourg
Milton Keynes
Munich
Zurich

North America
Atlanta
Austin
Chicago
New York
San Francisco
Seattle
Sunnyvale

Australia
Sydney

