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1 Elliptic Curves

An elliptic curve is a set of points satisfying an equation of the form

y2 = x3 + ax+ b

for coefficients a, b and variables x, y in some field F (of characteristic not 2
or 3). We place one additional restriction on an elliptic curve, which is that
4a3 + 27b2 6= 0. This condition ensures that the curve is non-singular, which
allows us to find a tangent line to any point on the curve [2, §3.1].

Let’s start with a few examples of curves, plotted over the real numbers.
Figure 1 shows a simple elliptic curve. The three points where it crosses the
x-axis correspond to the zeroes of the polynomial x3 − 3x+ 1. Figure 2 shows
the elliptic curve y2 = x3 − 2x+ 2, which only crosses the x-axis once in R.

Figure 1: The elliptic curve y2 = x3 − 3x+ 1

Figure 3 shows two singular curves. To define a group operation on the
points of the curve, we need to be able to take a tangent line to each point. So
we avoid these cases with that additional restriction on the coefficients.
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Figure 2: The elliptic curve y2 = x3 − 2x+ 2

(a) The curve y2 = x3 − 3x+ 2 (b) The curve y2 = x3

Figure 3: These curves have a ‘singularity’: a point where the tangent is not
clearly defined.
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1.1 Defining a Group Operation

Now, we have an equation for a curve, and we can define the set of points

C = {(x, y) | x, y ∈ F and y2 = x3 + ax+ b}

which is a subset of of the plane F 2. We want to make the set C into a group,
so we need to define an operation on it. Let’s call that operation ∗, and we’ll
define P1 ∗ P2 as the third intersection of the line through P1 and P2 which
lies on the curve C. Figure 4 shows this operation for the simple case of two
different points.

Figure 4: Finding the third point of intersection on the curve y2 = x3 − 2x+ 2

It is not immediately clear that this operation is well-defined. If we consider
the curve and line algebraically, we can define their equations in projective
space. Then, there are three solutions (counting multiplicity) to the system of
equations

Y 2Z = X3 + aXZ2 + bZ3

Y = αX + βZ

So the line and the elliptic curve intersect at three points.
Returning to the affine plane, what other cases do we need to consider?

First, we need to define ∗ when P1 = P2. We want to have the line through P1

hit the curve at exactly two points, P1 and P1 ∗P1. To achieve this, let the line
through P1 be the tangent to the curve. Then the tangent line intersects the
curve at one additional point, as desired (figure 5) [3, §I.2].

Now, we come to the case of a vertical line. A vertical line will intersect our
curve at exactly two points, because the curve is symmetric over the x-axis. But
those two points will violate our ∗ operation, because there isn’t a third-point
where the line intersects the curve (figure 6). This leads us to take an idea from
projective geometry: that there is an extra point on the curve called the point
at infinity.
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Figure 5: A tangent line intersects the curve at two points.

Figure 6: A vertical line only intersects the curve at two points.

The point at infinity (denoted ∞) is a point in the projective plane, so
there isn’t an intuitive way to draw it in our standard plane. However, we can
understand∞ as ‘outside’ of the plane, and simply treat it as a special geometric
object. As a benefit, we can take the third intersection of a vertical line to be
∞. We then need to redefine the set of points C to include ∞:

C = {∞} ∪ {(x, y) | x, y ∈ F and y2 = x3 + ax+ b}

Thus we have disposed of this problematic case [4, §2.2].
Having ∞ on our curve is also useful because it is a unique point which

exists on every elliptic curve. This makes it an ideal candidate for the identity
element of our group operation. We need to redefine our operation to make this
true, however. If we reconsider the case of the vertical line, we have two points
P1 and P2 such that P1 ∗ P2 =∞. Because the curve is symmetric, all we need
to do to get P1 from P2 is to reflect over the x-axis.

Let’s define a new operation + and say that, for any point P ∈ C, P =
P +∞ =∞+P . To produce + from our previous operation ∗, we only need to
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add one additional step: a reflection over the x-axis. We will see later that this
operation is commutative, which is why we chose to use the addition symbol
[4, §2.2]. Figure 7 revisits the previous cases to show how this new operation
works.

Figure 7: The + operation for two points on an elliptic curve

1.2 Deriving the Group Law

Now that we have defined the group operation geometrically, we can derive a
formula for it.

1.2.1 Identity

Define ∞ to be the identity. For any point P on C, P +∞ =∞+ P = P .

1.2.2 Addition

Let P1 = (x1, y1), P2 = (x2, y2) on C with P1 6= P2. If x1 = x2, then the line
is vertical and we define P3 = ∞. Otherwise, the equation of the line through
P1 and P2 has the form y = mx+ b, where m = y2−y1

x2−x1
and b = y1 −mx1. Now

substitute this into the equation of our curve to obtain

(mx+ b)2 = x3 + ax+ b

Expand and rewrite to get a cubic equation in x

0 = x3 −m2x2 + (a− 2mb)x+ b− b2

We know that this equation has three roots (of which we know two), so it must
be equal to

0 = (x− x1)(x− x2)(x− x3)

Multiplying out, we find that the coefficient of the x2 term has the form −x1 −
x2 − x3. So −m2 = −x1 − x2 − x3, and we can solve for the third x-coordinate
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in terms of the first two points:

x3 = m2 − x1 − x2

Finally, the third point is reflected across the x-axis. To find the y-coordinate,
we substitute our x-coordinate in to the equation of our line and negate it.

y3 = −(mx3 + b)

1.2.3 Doubling

Let P1 on C. We defined the addition of a point with itself by taking the tangent
line to that point on the curve. We can find the slope of the tangent line by
implicit differentiation:

2y
dy

dx
= 3x2 + a

dy

dx
=

3x2 + a

2y

m =
3x21 + a

2y1

Then we simply follow the same process for addition.

x2 = m2 − 2x1

y2 = −(mx1 + b)

1.2.4 Inverses

Let P = (x, y) on C. Define −P = (x,−y). The line through P and −P is
vertical, and hence intersects the curve at P , −P , and ∞. ∞ is a unique point
on our curve, and has the special property that “reflecting across the x-axis”
(negating the y-coordinate) returns ∞. So P + (−P ) =∞.

1.2.5 Closure

Now we have fully defined the group law for an elliptic curve. The closure of
the set {∞} ∪ {(x, y) | x, y ∈ F and y2 = x3 + ax + b} follows from the group
law and the closure of the field F .

1.2.6 Commutativity

The group law is commutative because the line through two points is defined
symmetrically. In other words, the line through points A and B is the same as
the line through points B and A.
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1.2.7 Associativity

We will prove the associativity of the group law geometrically, but it also follows
algebraically from the formulas above. To complete the proof, we will use a
theorem from projective geometry:

Theorem (Cayley-Bacharach Theorem). Let C, C1, and C2 be three cubic
curves. Suppose C goes through eight of the nine points of C1 and C2. Then C
goes through the ninth intersection point.

Let P,Q,R on our elliptic curve E. To show that P+(Q+R) = (P+Q)+R,
it suffices to show that P ∗ (Q + R) = (P + Q) ∗ R. Our goal is to define two
cubic curves, one of which intersects P ∗ (Q+R) and the other which intersects
(P +Q) ∗R. Then, if their other eight points of intersection match, it must be
that P ∗ (Q+R) = (P +Q) ∗R.

Let C1 be the curve through P ∗(Q+R) and C2 the curve through (P+Q)∗R.
We will construct C1 and C2 directly. Consider a linear equation f(x, y) =
ax+ by+ c = 0. Given three such equations f1, f2, f3, we can construct a cubic
curve g(x, y) = (f1(x, y))(f2(x, y)(f3(x, y)) = 0. Then every zero of g is on one
of the lines; so the curve is the union of the points on each of the lines and the
point at infinity.

Let’s start with C1 (figure 8). We want to deconstruct the point P ∗ (Q+R)
into three linear equations. The first line is the line between Q and R, whose
third point of intersection is Q ∗ R. The second line is between Q ∗ R and ∞,
which intersects the curve at Q + R. The third line is between Q + R and P ,
which intersects the curve at P ∗ (Q+R).

For C2, we define the lines similarly (figure 9). Line one has intersections P ,
Q, and P ∗Q. Line two has intersections P ∗Q, ∞, and P +Q. Line three has
intersections P +Q, R, and P ∗ (Q+R). Thus we have two curves C1 and C2

which intersect at eight points, so their ninth point of intersection is equal by
Cayley-Bacharach. [3, §1.2]

This completes our proof that (E,+) is a group.
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Figure 8: Defining C1 as the union of three lines

Figure 9: Defining C2 as the union of three lines
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1.3 Weierstrass Form and Admissible Changes of Vari-
ables

Before moving on, we will take a moment to revisit the definition of an elliptic
curve. Initially, we defined an elliptic curve to have the relatively simple equa-
tion y2 = x3 + ax + b. This type of curve is actually a subset of all elliptic
curves, and the equation is in short Weierstrass form. To use this equation,
we had to restrict our field so that it is not characteristic 2 or 3.

The most general elliptic curve equation takes the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Again, the curve must be non-singular. However, the condition for singularity
is significantly more complicated, so it will not be reproduced here. If we are
working over a field with characteristic different from 2 and 3, we can use an
admissible change of variables to transform a general curve equation to one
in short Weierstrass form.

Performing an admissible change of variables for an elliptic curve amounts
to constructing an isomorphism between two general curves. Every admissible
change-of-variables takes the form

(x, y) 7→ (u2x+ r, u3y + u2sx+ t)

for some u, s, r, t in our field and u 6= 0. The transformation from general
equation to short Weierstrass form uses the following map:

(x, y) 7→
(
x− 3a21 − 12a2

2232
,
y − 3a1x

2333
− a31 + 4a1a2 − 12a3

233

)
Our restriction to fields with characteristic not 2 or 3 now makes sense: this
admissible change of variables requires the inverse of 2 and 3 to be defined [2,
§3.1].

10



2 The Discrete Logarithm Problem

Given a group G with operation ∗ we can define a map · : Z×G→ G by

n · g 7→ g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

Let’s first consider the case of Z∗
p, the multiplicative group of integers mod

p. In this case, our map · is equivalent to exponentiation. Let a, b ∈ Z∗
p and

assume ∃n ∈ Z such that an = b. Over the real numbers, we call solving for n
finding a logarithm. Over Z∗

p, n is the discrete logarithm of b with respect to
the base a.

For an elliptic curve C, we also have a group structure. In this case, the
map · is equal to the repeated addition of a point to itself. We can call this map
point multiplication. For a point P on C, nP = P +P + · · ·+P . Again, there is
an analogue to the logarithm. If we have two points P,Q on C where nP = Q,
then n is the elliptic-curve discrete logarithm (ECDL) of Q with respect to P .

2.1 Trap-Door Functions

Why do we bother defining such a simple operation? It turns out that this is the
exact operation we will use to construct a cryptosystem. In fact, many modern
cryptosystems are based on a class of operations called trap-door functions. A
trap-door function is a function that is simple to compute in one direction, but
very costly to compute in the other direction. In the case of the ECDL, it is
simple to compute a point multiplication, but hard to compute the logarithm.

Note that this is not a formal definition. In general, a trap-door function
is infeasible to break, given current computing resources. However, most trap-
door functions can only be conjectured to be secure. While we currently do
not know any algorithms which solve the ECDLP, there is no guarantee that a
fast algorithm does not exist. Next, we’ll consider a basic approach to solving
ECDLP.

2.2 Attacks on Discrete Logarithms

Imagine we’re playing a game. I pick a point P on an elliptic curve, and tell
you the curve’s parameters and the point I picked. Then I pick a secret integer
s and tell you sP . Your job is to find s. This is the basic model of a user and
attacker in cryptosystem which is based on the ECDL. Given P and sP , can
the attacker find s? Let’s look at how the attacker might go about doing that.

2.2.1 Naive Multiplication

Our first attempt will be to simply try every integer k. If kP = sP then we
know k = s. If our curve has only a small number of points, then a computer
will chew through this problem in seconds. Let’s say our curve has N points,
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and each point multiplication takes a maximum of M operations. Then naive
multiplication has algorithmic complexity O(NM).

From a user’s perspective, M should be small, so curve operations are fast.
In order to make the attacker’s life difficult, N should be large: the chosen curve
should have a large number of points. Many curves used for cryptography are
over large prime fields, with a massive number of points (more than 2200). Using
a naive algorithm against such a curve, even with an extremely fast computer,
probably won’t finish in our lifetime.

2.2.2 Baby Step Giant Step

There are a number of algorithms which reduce the amount of time it takes
to solve the ECDLP. Let’s consider an elliptic curve (or a subgroup) which is
cyclic, with generator G and order N . The user picks n and computes nG.

The Baby-Step Giant-Step algorithm rewrites the point P = nG as (im +
j)G, with m = d

√
Ne. Then jP is computed for 0 ≤ j < m and stored. Finally,

multiplication is used to find imG for 0 ≤ i < m, which is subtracted from P
to solve for jG.

Algorithm 1 Baby-Step Giant-Step for ECDLP

m←
√
N

for 0 ≤ j < m do
Compute and store (j, jP )

end for
for 0 ≤ i < m do

Compute Q− imP
if Q− imP = jP for some j then

return n ≡ j + im
end if

end for

Baby-Step Giant-Step completes in O(
√
NM) time and O(

√
N) space com-

plexity. This is a large improvement over naive multiplication, but still very
slow on cryptographic curves. While there are some algorithms which solve
specific cases of the ECDLP, there is no known algorithm which feasibly solves
this problem on a general cryptographic curve. The security of an elliptic curve
cryptosystem relies on this fact [4, §5].
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3 Elliptic-Curve Diffie-Hellman Exchange

The split between what we recognize as modern and pre-modern cryptography
coincides directly with the development of public key cryptography. Public key
cryptography is a class of cryptosystems which are defined by the fact that each
user has a public key, which they publish for anyone to see, and a private key,
which they keep secret. The public key allows anyone who wants to communicate
with that user to derive some information which is only shared between those
two users, even over an insecure channel.

One of the major problems of pre-modern cryptography was that every
method of communication required a shared key. This problem is called the
key distribution problem. Essentially, if two parties wanted to communicate
they needed to meet and exchange a key - there was no way to communicate
over an insecure channel without first communicating over a secure channel.
Public key cryptography solves this problem by allowing two parties to com-
municate without the need of a shared key, or to securely derive one over an
insecure channel.

3.1 The Diffie-Hellman Key Exchange

The Diffie-Hellman Key Exchange is a method of key derivation which allows
two users to derive a shared key over an insecure channel. It is typical of
cryptography to define communication algorithms as follows: imagine two users,
Alice and Bob. Alice and Bob want to communicate securely, but can only talk
over an insecure line. Somewhere on the insecure line an attacker, Eve, is
listening in and attempting to decrypt their communication.

The Elliptic Curve Diffie-Hellman Exchange (ECDHE) proceeds as
follows:

Algorithm 2 Elliptic Curve Diffie-Hellman Exchange

1. Alice and Bob agree on a curve C and a generating point P . (In practice,
these parameters are standardized and known to everyone.)

2. Alice generates a random, secret integer a and sends Bob aP .

3. Bob generates a random, secret integer b and sends Alica bP .

4. Alice computes a(bP ).

5. Bob computes b(aP ).

6. Alice and Bob now share the key abP .

At this point, it is clear that Alice and Bob share the point abP . Eve,
however, only knows the points aP and bP , which she cannot use to compute
abP . Thus for Eve to break the ECDHE, she must solve the ECDL: given aP ,
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find a, or given bP , find b. From now on, Alice and Bob can use a symmetric
encryption algorithm (such as AES) to communicate securely. Their shared
key is derived from abP . Note that abP is a point on a curve, while most
encryption algorithms desire keys to be a string of random bytes. Typically
Alice and Bob will use an agreed upon method of key derivation, such as a hash
of the x-coordinate, to generate the actual session key [4, §6.2].

3.2 Implementation Details of ECDH

3.2.1 Choice of Curve

We now have all of the necessary information to implement a theoretical cryp-
tosystem. However, one of the most important choices in cryptographic design
is the choice of parameters: what curve will we use, over what field, and what
will the generating point be? Wrong choices in these areas can result in massive
holes in the security of the ECDL. Daniel J. Bernstein and Tanja Lange have
produced a database of the numerous choices of curves, as well as a discussion
of various security flaws.

For our implementation, we will use Bernstein’s Curve25519. Curve25519
is an elliptic curve in Montgomery form, over the prime field Zp where p =
2255−19. This curve was designed for security: for example, it is not vulnerable
to attacks based on subgroups of the curve [1].

3.2.2 Point Multiplication

Performing point multiplications is one consideration that is less important in
theory but extremely important in reality. The naive method is to compute nP
by summing n copies of P : P+P+· · ·+P . This algorithm is exponential, which
is to say, extremely slow for a real-world application. We can see an immediate
improvement from the decomposition of n into its binary representation. Then,
each zero bit of n corresponds to a doubling of the point P , and each one bit of
n corresponds to adding P and doubling.

Let bmbm−1 · · · b1b0 be the binary representation of n (where bm is the most-
significant bit). The Double-and-Add algorithm is described below.

Algorithm 3 Elliptic Curve Point Multiplication: Double-and-Add

Q←∞
for 0 ≤ i ≤ m do

if bi = 1 then
Q← Q+ P

end if
Q← 2Q

end for
return Q
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While Double-and-Add is much faster than repeated addition, it demon-
strates one of the difficulties of real-world cryptography. Specifically, this algo-
rithm leaks information about n by performing a different number of doublings
and additions based on the binary representation of n. This information leakage
makes an implementation which uses Double-and-Add vulnerable to timing or
power analysis. To avoid this vulnerability in practice, an ECDHE implementa-
tion will use the Montgomery Ladder, a multiplication algorithm which operates
in constant time [2, §3.3].

3.2.3 A Pedagogical Implementation of ECDHE

The result of this document is an implementation of the Elliptic-Curve Diffie-
Hellman Exchange, using Curve25519. The code is available in curve25519.rb.
I have followed Bernstein’s specification fairly closely, but there are some devi-
ations. The code is designed for clarity and understanding, so my code deviates
in the following ways:

• Use of (x, y) coordinates and formulas, rather than XZ coordinates

• Use of Double-and-Add for point multiplication rather than Montgomery
Ladder

• Use of SHA256 for key derivation rather than Salsa20

The use of (x, y) coordinates and the Double-and-Add algorithm are equiva-
lent to Bernstein’s choices, but cause some penalties in speed and security. The
use of SHA256 as a hashing algorithm is not equivalent to Bernstein’s choice,
but represents a widely-available hash which is an acceptable choice for key
derivation.
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